Ongoing Kalina Cycle® Developments

Innovative Energy Systems Workshop

Honolulu, Hawaii March 19 – 20, 2003

Presented by:

Hans J. Krock, PhD, PE
Professor, University of Hawaii at Manoa

Simplified Kalina Cycle®

Bottoming Cycle Installations of the Kalina Cycle® in Several Locations **Globally Have Excellent Operational Records**

Operational Kalina Cycle® Plants

3.5 MW Kalina Cycle[®] Plant Canoga Park, CA

2 MW Kalina Cycle® Plant Husavik, Iceland

Courtesy: Exergy

OTEC Systems:

Island Based Multi-Product Optimized Systems.

Power Production by the Kalina Cycle®

Earth's Solar Energy Flux

Tropical Ocean Temperature Profile

Hawaiian Based Research Advances in OTEC

- Cold Water Pipe Design and Installation
- Closed-Cycle OTEC Net Power Production
- Bio-fouling Control in Warm Water System
- Closed-Cycle Aluminum Heat Exchanger Dynamics
- Non-Condensable Gas Exchange Dynamics
- Aquaculture Development
- Open-Cycle OTEC Fresh Water Production

Integrated OTEC System **Hydrogen Electricity** Sun **Drinking Desalinated Water Irrigation Warm Water OTEC** Ocean **Mariculture Cold Water Discharge Cold Water** Nori **Abalone** Kelp Clams **Oysters Phytoplankton** Lobster Shrimp Salmon Zooplankton **Steelhead** trout **Cold Water Building** Refrigeration **Air Conditioning Air-Conditioning**

Parameters Required for Kalina Cycle® Design:

- Delta T
- Flow Rates
- Chemical Environment
- Elevation

Shore Based System or Concrete Barge System

Courtesy: Alfred Yee & Associates

Platform Under Construction

OTEC Platform Concept

Technical Developments in the Last Decade

- Operating Kalina Cycle® Plants
- Open-Cycle OTEC Pilot Plant
- Non-Condensable Gases Problem Solved
- Cold Water AC Installed
- Open-Cycle OTEC Turbine Design
- Fresh Water Production with Open-Cycle OTEC Systems
- Multi-Product Systems Engineering
- Oil Drilling Platforms in Depths Greater than 3000 Feet

Economic Conditions are Presently Favorable Because of Low Interest Rates and High Oil Prices **Especially in Niche Markets**

Large Scale Floating Systems for Power **Production and** Hydrogen Production and Liquefaction

Courtesy: Popular Science

Deep Water Offshore Platforms Developed by the Oil Industry are Adaptable for OTEC Application

Natural Synergy for LH₂ Production

- Constant Production Rates
- Pure Water Resource
- Heat Sink for Liquefaction
- Convenient Transport

Economics are Favorable if **Coordinated** with Offshore Oil Industry

Transportation Fuel Should Be Economically Evaluated on a Per Mile **Basis Rather than on Equivalent Energy**

The Kalina Cycle® is **Proven Technology** with a Bright Future in the Development of the Largest Renewable Resource in the World The Tropical Ocean!